On behalf of the members and office bearers of Scientific and Technical Research Association (STRA), it is a pleasure to welcome the Conference participants whose research papers are the great contribution into the work of the Association.

Being an international community of researchers, practitioners, students and educationists, STRA is promoted by Eurasia Research, and concentrates on the development of innovative approaches in the field of science and technology. The purpose of STRA gatherings is bringing together worldwide researchers and professionals, encouraging intellectual progress and creation of the opportunities for networking and collaboration. As such, I strongly appeal all participants, whether this is your first time at our Conference or you have attended in the past, to make the most of this opportunity and to take the time to connect, collaborate, and communicate with fellow attendees. The STRA conferences serve as an outstanding forum to share ideas, which in turn have the potential to become extraordinary scientific and technological innovations for the benefit of humanity. In closing, I wish you an enjoyable, memorable, and productive time at the Conference and look forward to the partnerships that result from your networking and discussions.

Prof. Liudmyla Gryzun
STRA President, PhD & Post-Doctoral Degree in Pedagogical science
Full Professor of Simon Kuznets Kharkiv National University of Economics
Information Systems Department (Kharkiv, Ukraine)
Online Live International Conference
21st February 2023

Video link for the Live Conference: Click Here
Participants from the following countries:

- Oman
- Netherlands
- United Kingdom
- Latvia
- Japan
- Taiwan
- Thailand
- Indonesia
- China
- India
- Nigeria
- USA
- Saudi Arabia
- Turkey
- Australia
Online Live International Conference
17th March 2023

Video Link for the Live Conference: [Click Here]
Participants from the Following Countries:
Online Live International Conference
26th April 2023

To continue - We changed gears
Eurasia Research Online Live International Conference
26th April, 2023
STRA - Scientific and Technical Research Association

Video Link for the Live Conference: [Click Here]
Participants from the Following Countries:

- Portugal
- Canada
- Bangladesh
- Hungary
- Germany
- Japan
- Taiwan
- Sri Lanka
- Indonesia
- China
- Malaysia
- Kazakhstan
- Morocco
- USA
- Georgia
- Mongolia
- India
ISSN: 2457-0648
DOI: https://doi.org/10.20319/icstr.2022.v3

STRA Full name: - Scientific & Technical Research Association
Address: - B-305 South Block Eurasia Research World Trade Park, Malviya Nagar Jaipur, India
E-mail: convener@eurasiaresearch.info

Conference website- https://straevents.org/stra

All papers of the proceedings are made available to the public under the following Creative Commons license for an unlimited period of time:
Creative Commons Attribution Noncommercial 4.0 International License.

Link to summary and binding version of the license text:
https://creativecommons.org/licenses/by-nc/4.0/

If the contents of the proceedings are used for further work, these are to be referenced following good scientific practice. The recommended citation is:

Author Surname, First Initial. Second Initial. (Year). Conference paper title. In Editor First Initial. Editor Surname (Ed.), Proceedings Book Title (pp. page range of paper). Place of Publication: Publisher.
Table of Content:

Particulars

STRA Association

President & Vice- President

STRA Committee Members

Preface

Publication Process

Acknowledgment

List of Keynotes

List of Presenters

List of Listeners

Upcoming Conferences
Scientific and Technical Research Association (STRA) is an international community of researchers, practitioners, students, and educationists for the development and spread of ideas in the field of science and technology. STRA is promoted by Eurasia Research. STRA aims to bring together worldwide researchers and professionals, encourage intellectual development, and treat opportunities for networking and collaboration. These objectives are achieved through academic networking, meetings, conferences, workshops, projects, research publications, academic awards, and scholarships.

The driving force behind this association is its diverse members and advisory board, who provide inspiration, ideas, efforts and drive collaborations. Scholars, Researchers, Professionals are invited to become a member of STRA and join this ever-growing network, working for benefit of society and research with the spirit of sharing and mutual growth.

Salient Features:
- 15000 + and growing network of professionals
- Professional and Experienced team
- Conferences in Asia, Europe & Africa
- Events at reputed institutes and grand venues
- Lifetime membership
- Strong Social Media Platform for networking
- Young Researcher Scholarships
- Research publication in international journals
Dr. Liudmyla Gryzun, Full Professor, Information Systems Department, Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine

Dr. Elza M M Fonseca, Faculty of Engineering, Laeta, Inegi, Polytechnic Institute of Bragança, Portugal

Prof. Bahaa Talaat Shawky, Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
STRA COMMITTEE MEMBERS

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Institution and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asst. Prof.-Ing. Ralph Hammann</td>
<td>Thomas D. Hubbard Professor in Architecture, University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Elza M M Fonseca</td>
<td>Faculty of Engineering, Laeta, Inegi, Polytechnic Institute of Bragança, Portugal</td>
</tr>
<tr>
<td>3</td>
<td>Prof. Bahaa Talaat Shawky</td>
<td>Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth Street (former El Tahrir Street), Dokki, Giza, 12622, Egypt</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Hidayatul Aini Binti Zakaria</td>
<td>School of Ocean Engineering, Universiti Malaysia Terengganu, Malaysia</td>
</tr>
<tr>
<td>5</td>
<td>Asst. Prof. Mohammed Alsumiri</td>
<td>Department of Electrical and Electronics Engineering Technology, Yanbu Industrial College, Yanbu, Saudi Arabia</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Ersin Aytac</td>
<td>Department of Environmental Engineering, Faculty of Engineering, Bulent Ecevit University, Zonguldak, Turkey</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Syafaruddin</td>
<td>Department of Electrical Engineering, Universitas Hasanuddin, Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Melfei Bungihan</td>
<td>College of Teacher Education, Quirino State University, Diffun, Quirino, Philippines</td>
</tr>
<tr>
<td>9</td>
<td>Dr. Sivakumar Naganathan</td>
<td>Civil Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia</td>
</tr>
<tr>
<td>10</td>
<td>Asst. Prof. Jacqueline E. Hilario</td>
<td>Department of Environmental Science, School of Arts, Sciences and Teacher Education, Emilio Aguinaldo College, Manila, Philippines</td>
</tr>
<tr>
<td>11</td>
<td>Asst. Prof. Saratha Sathasivam</td>
<td>School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia</td>
</tr>
<tr>
<td>12</td>
<td>Diena Noviarini</td>
<td>Faculty of Economics, State University of Jakarta, Indonesia</td>
</tr>
<tr>
<td>13</td>
<td>Dr. Muharrem Karaaslan</td>
<td>Ph.D. Physics Department from the University of Cukurova, Adana, Turkey</td>
</tr>
<tr>
<td>14</td>
<td>Dr. Anna Gyulkhandanyan</td>
<td>Department of Pathological Biochemistry, Group of Bioengineering, Institute of Biochemistry of the National Academy of Sciences of Armenia, Yerevan, Armenia</td>
</tr>
</tbody>
</table>
15 Dr. Paulo A. G.Piloto Professor, Dep. of Applied Mechanics, Polytechnic Institute of Bragança
	Campus Santa Apolónia, 5300-253 Bragança, Portugal

16 Soumyajit Goswami Sr. Advisory Consultant, IBM, India

17 Dr. Iman Farshchi Head of School, School of Civil, Engineering, Linton University College,
	Malaysia

18 Aminur Rahman Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang,
	Selangor, Malaysia

19 Prof. Azilawati Jamaludin Research Scientist, National Institute of Education, 1 Nanyang Walk,
	Singapore

20 Shorouq Ahmed Chemist & Research Associate, Nanotechnology and Advanced Material
	Research Program (Nam), Energy and Building Research Center (Ebrc)
	Kuwait Institute for Scientific Research, Kuwait

21 Prof. (Dr.) Hamid Ali Abed Al-asadi Computer and Communication Network Engineering Ph.D. Computer
	Science Dept., Education College for Pure Science, Basra University,
	Basra, Iraq

22 Ir. Dr. Adjunct Prof. Nor Halim Bin Hasan Deputy Director, Department of Occupational Safety and Health
	Seremban, Negeri Sembilan, Malaysia

23 Hamed Taheroost Ph.D. of Computer Science Phd of Management Information System
	Master of Information Security, CEO at Hamta Business Solution Sdn
	Bhd / Ahoora Ltd

24 Dr. Selcuk Gumus Chemistry, Yuzuncu Yil University, Van, Turkey

25 Dr. Aysegul Gumus Chemistry, Yuzuncu Yil University, Van, Turkey

26 Associate Professor Dr Sallehuddin Ibrahim Department of Control and Mechatronic Engineering,
	Faculty of Electrical Engineering, University Technology Malaysia,
	Skudai, Johor, Malaysia

27 Dr. S. Balamurugan Director-Research &Development, Mindnotix Technologies, India

28 Dr. Mohammad Arif Associate Professor, Architecture Section, Aligarh Muslim University,
	Kamal
	India

29 Dr. Anirban Das Professor, Department of Computer Science, University of Engineering
	& Management, Kolkata, India

30 Dr. Yousef Daradkeh Associate Professor and Assistant Dean for Administrative Affairs,
31 Cecília R.C. Calado
Professor, ISEL-Instituto Superior de Engenharia de Lisboa,
Instituto Politécnico de Lisboa, Lisboa, Portugal

32 Professor Dr. Hjh. Norma Binti Alias
Ibnu Sina Institute for Fundamental Science Studies, 81310 Technology University of Malaysia, Skudai, Johor, Malaysia

33 Dr. Liudmyla Gryzun
Full Professor of Computer Science Department, G.S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine

34 Malini Nair
Lecturer, Faculty of Business, Higher Colleges of Technology, Sharjah Women’s College, UAE

35 Yin Ling Lai
Dean, Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, Malaysia

36 Ramin Masoudi
Assistant Professor, Department of Mechanical Engineering, American University in Dubai, Media City, Dubai, UAE

37 Ing. Ts. Dr. Mohd Faisal Hushim
Lecturer, Automotive & Combustion Synergies Group (ACSG), Faculty of Engineering Technology, Universiti Tun Hussein Onn, Parit Raja, Malaysia

38 Dr. (Mrs) W. G. Samanthi Konarasinghe
Institute of Mathematics and Management, Sri Lanka
Preface:

Scientific & Technical Research Association (STRA) is a conglomeration of academia and professionals for promotion of research and innovation, creating a global footprint. STRA aims to bring together worldwide researchers and professionals, encourage intellectual development and providing opportunities for networking and collaboration. These objectives are achieved through academic networking, meetings, conferences, workshops, projects, research publications, academic awards and scholarships. STRA strives to enrich from its diverse group of advisory members. Scholars, Researchers, Professionals are invited to freely join STRA and become a part of a diverse academic community, working for benefit of academia and society through research and innovation.

For this conference around 40 Participants from around 11 different countries have submitted their entries for review and presentation. STRA has now grown to 16,450 followers and 9500 members from 85 countries.

Membership in our scholarly association STRA is chargeable.
List of members: https://straweb.org/membership/list-of-members/
Membership Application form link: https://straevents.org/membership?association=stra

Proceedings is a book of abstracts, all the abstracts are published in our conference proceedings a day prior to the conference.
You can get our conference proceedings at: https://straweb.org/conference/proceedings/

We hope to have an everlasting and long-term friendly relation with you in the future. In this context we would like to share our social media web links: https://www.facebook.com/eurasiaresearch/

You will be able to freely communicate your queries with us, collaborate and interact with our previous participants, share and browse the conference pictures on the above link.
Our mission is to make continuous efforts in transforming the lives of people around the world through education, application of research & innovative ideas.

Editor: Dr. Anupam Krishna
Publication Process:
All accepted original research papers in the English Language will be published in selected journals as per the publication policy, as available on the conference website. Once you receive the Invitation/Acceptance letter that means your full paper is also accepted for publication in an International Journal, if you follow the communicated editorial instructions/guidelines.

The journal publication will be peer-reviewed, checked for plagiarism, indexed, archived, open access, referenced by CrossRef and will carry ISSN number and DOI.

Even if your full paper is not yet ready, you may participate in the desired conference with your abstract. The abstract must contain the following:
- Article Title
- Full Names/Emails/Affiliations of the authors
- Abstract in 100-300 words
- 3-7 Keywords
You may update your submitted abstract/title/co-authors/submit your full-paper on a later stage (before the conference).

You may submit your full original paper for publication in the conference journal, when it is complete, till the conference date. The last date of submission is the conference day itself. While submitting the full paper, please provide the following in the email:

- Full paper in MS Word format. (Ideally, a research paper should be 2500-3000 words).
- Details of 2 reviewers with their names, affiliations, contact numbers and email IDs (If possible send two emails for each reviewer).
- Duly filled and scanned the 'Consent to Publish' form with a handwritten signature.
We follow the following steps for publication in our associated International Journals. The publication process takes around 70 days, starting from the end of the conference.

A list of registered papers is sent to all the participants of the conference within a week's time after the conference. Please see, if your paper is included in the list. If not, please write back to us for inclusion. This list would also mention any deficiency/incompleteness found in the submitted paper. You would be given 10 days to return your complete papers/required information.
After this, the editorial team would send all complete papers for review (usually 5-7 reviewers). The review process takes around 30 days.

Following this, our editor would send the editorial comments/suggestions to the corresponding author. Please improve the paper as indicated in the review and send it back to us within 10 days.
If the paper received is complete in all regards as per the comments/suggestions, it would be sent for final publication, else we would send it again to you and finally, 5 days would be given to you for its improvement.
Finally, the paper is published and the authors are informed about the published paper by email, which contains the paper URL, DOI, Citation, and other related information.

If you fail to meet the deadlines/correct the paper as per review comments, the paper may be rejected or it will be postponed for publication in the next issue. Normally, the entire process takes around 70 days.

Authors may request the conference secretariat for withdrawing their paper, for publishing it elsewhere (in the journal of their choice). In such cases, the requested papers are removed from the publication process. The withdrawal requests may be given to the conference secretariat before the commencement of the publication process (7 days after the conference).
Acknowledgements

Our sincere thanks go to our outstanding supporters who made this great and interesting conference possible.
Some special thanks go to our outstanding Key-Note speakers, not only for their inspiring and highly interesting presentations but also for their input and contributions in the discussions and Q&A sessions during the conference:

KEYNOTE SPEAKERS 2023

Topic: Flexible Approach to Strategic Planning for Modern Business Organization

Dr. Rawani is Director of National Institute of Technology Raipur (India). He has received his M.Tech. in Industrial Engineering and Management from I.I.T. Kharagpur and Ph.D. in Strategic Management from I.I.T. Delhi. He has about 40 years of teaching/research and administrative experience of educational institutes. Dr. Rawani has published more than one hundred and fifty research papers in International/National Journals and International Conferences. He has produced nine Ph.D. under his supervision. He has delivered invited lectures in many countries including Switzerland, Singapore, Malaysia, China, Mauritius, Dubai, USA, Hong Kong, Thailand and Indonesia. He has served as reviewer for many International Journals and conferences. Dr. Rawani is conferred with fellowship award by Indian Institute of Industrial Engineering, Mumbai for outstanding contribution in promotion of Industrial Engineering Profession. In 2022, Dr. Rawani has been conferred with the ‘Education Leadership Award’ by World Education Congress, ‘Exemplary Leadership Award’ by APAC News Network, ‘Director of the year’ Award by Universal Mentors Association and ‘Shiksha Ratna Award’ by Reverie Language Technologies. He was also conferred with 'International Corporate Leadership Award in the field of Education' in 2015 at Bangkok and with ‘Pride of Asia International Award’ in 2014 by Economic Growth Society of India. He has also received ‘Rashtriya Gaurav Award’ in 2010 by India International Friendship Society, India.

![Dr. Rawani](image)

Prof A M Rawani
Director of National Institute of Technology Raipur, India

Topic: Would Be Quality Management and Organizational Excellence

Malini Nair is a Business Faculty at the Higher Colleges of Technology. She teaches classes in Quality, Auditing, Innovation & Entrepreneurship, Management and Leadership as well as Economics. She is interested in the use of interventions, technologies, and tools that facilitate group/team processes and lead to better task outcomes through Quality standards. She has developed and taught several courses related to Quality, HR, Innovation, Marketing and Economics to both MBA and undergraduate students. She is currently a member of the Program Advisory Committee for Quality at the University level. She is a Doctoral candidate pursuing her PhD in Business and Management. She has written several research papers and continues do so. She has received a SEED grant for one of her research papers. She is actively involved in Community projects and her forte is mentoring and encouraging her students to actively participate in these initiatives. Prior to her appointment as a faculty, she has an immense amount of industry experience especially in the retail sector in the UAE. She studied Economics Honors and attended the prestigious Birla Institute of Technology (BIT) in India where she obtained her Master’s degree in Business Administration. She went on to work as a Group HR Manager and continued to teach as she believes in sharing the knowledge gained through the industry. Her initiatives at the college level have been highly commended.

![Malini Nair](image)

Malini Nair
Co-Curriculum Chair for the Quality Program in the Business Division at Sharjah Women’s Campus, United Arab Emirates
Abstract: Conventional hydrothermal and alkaline fusion methods have been successfully used to produced Linde Type A Zeolite from Nigeria raw kaolin deposit. The synthesized zeolites were characterized by X-ray diffraction (XRD). The percent crystallinity was estimated from the peak area. The percent crystallinity of as-synthesized Zeolite A ranged from 22.52 to 30.70 % for samples synthesized by conventional hydrothermal method (AC) and from 28.74 to 43.35 % for those produced by alkaline fusion route (AF). The AF’s gave better results than AC’s samples. It was concluded that the fusion process aid in transformation of quartz and kaolinite into large amount of amorphous aluminosilicate (metakaolinite). In each case a replicated 23 two-level factorial design was used to study the influence of three different variables/ parameters (crystallization temperature, crystallization time and ageing time) on the quality of the synthesized zeolites (expressed in terms of CEC). The magnitude of the effect of these parameters and their interaction were also investigated using factorial analysis. The crystallization temperature is the most significant factor and the interaction between the ageing time and crystallization temperature is less significant on the CEC. In both cases the other variables were found to be statistically significant. The average CEC for samples AC and AF respectively ranged between 264.32 – 585.75 and 303.31 – 627.74 meq/100 g. Some of the calculated CEC values are quite high compared to the theoretical value of 548 meq/100 g for zeolite A which may be due to presence of some unidentified/undetected phases or impurities that has adsorption capacity. The synthesized zeolites showed high CEC as compared to other commercial zeolites and therefore can be used in the removal of heavy metals from aqueous phase.

Keywords: Zeolite, Alkaline fusion, Factorial design, Cation exchange capacity and Crystallinity.
earths elements, often called exchangeable cations in the structure of the zeolites which are easily exchanged when zeolites come in contact with solutions of “saturating” or “indexing” ions (Konstantinos, 1999). The commonly exchangeable ions are Ca2+, Mg2+, K+, Na+ and NH4+ and it is usually expressed as milliequivalents per gram (or per 100g) of material. The reaction between a zeolite and an ionic solution is illustrated as: N1(Z) + N2(S) → N2(Z) + N1(S) (1.1) N1 is the exchangeable cation in the zeolite Z and N2 is the saturating or index ion in solution S. According to the work of Mumpton (1999), CEC increase with the aluminum content of the zeolite because more extra framework cation is needed to balance the charge. The most widely used cation exchange process is by treating zeolites with aqueous solutions that contains the cation to be introduced. This is achieved by suspending the zeolites in the solution under the appropriate conditions (amount and concentration of the salt, temperature and pH) for ion exchange, followed by filtration and washing of the filter cake. Most common synthetic zeolites are types A, X, Y and ZSM-5. Due to their exceptional properties, both natural and synthetic zeolites are commercially used in adsorption, ion-exchange, as molecular sieve and as catalyst. Most natural zeolites are of lower Si/Al ratios, since structure-directing agents necessary for formation of siliceous zeolites are absent. Also, the catalytic activity of natural zeolites is limited by their inadequate supply, non-uniform pore size, impurities and low surface areas (Kovo, 2011). As a result of these shortcomings synthetic zeolites were developed mimicking the conditions of their natural counterparts but at lower temperature and shorter time (Auerbach, 2003; Kovo, 2011). Synthetic zeolites are generally synthesized by hydrothermal processes using commercial chemicals (sodium aluminate, aluminium hydroxide, silica gel, sodium metasilicate) as a source of silica and alumina which are quite expensive generally. The use of clay (kaolin) as a combined source of silica and alumina is economical because it reduces the cost of producing zeolite from expensive chemicals (Kovo, 2011). Previous work of Kovo, 2011 on the synthesis of zeolitic material from Ahoko kaolin was carried out by conventional hydrothermal method (which is based on dissolution of metakaolin with alkaline solutions, mainly NaOH followed by hydrothermal crystallization of the aluminosilicate gel) using one-factor-at-a-time approach which fails to detect interaction among variables. In this work, design of experiments (two-level factorial design) was used in the transformation of Ahoko kaolin into zeolite A by two different methods: (i) Conventional hydrothermal alkaline activation (ii) Alkaline fusion prior to hydrothermal treatment. The second method tends to dissolve more of the aluminosilicate and also aid in transformation of quartz and kaolinite into sodium silicate and metakaolinite (Rios, Williams, and Fullen 2008; Espejel-Ayala, Schouwenaars, Dura´n-Moreno, Ramı´rez-Zamora, 2013). Since zeolites vary with location and the optimal way to learn about zeolite synthesis is by examining a single zeolite synthesis from different perspectives (Auerbach, 2003).

2.0 Materials and Experimental Procedure: The raw material is kaolin which is sourced from Ahoko in Kogi state, Nigeria. Prior to zeolite production, the kaolin was refined/beneficiated to reduce the quartz content. This is followed by drying and pulverizing using porcelain mortar and pestle. The chemicals used are: sodium hydroxide pellets (97.5%), sodium hydroxide powder (99%), sodium metasilicate (95%), ammonium acetate (98%), ethanol (99%) and deionised water.

2.1 Experimental Design for Factorial Analysis: In order to reduce the total number of experiments, two level experimental designs with three factors was used. The experimental factors which were chosen from literature are ageing time (hr), crystallization time (hr) and crystallization temperature in (°C). The number of experiments is expressed as

\[N = (2k) \times R \] (2.1)

Where: N= Number of experiments, k = Number of factors and R = Number of replica

<table>
<thead>
<tr>
<th>Table 2.1: Levels of Independent Variable for Zeolite A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>Coding</td>
</tr>
<tr>
<td>Ageing Time (hr)</td>
</tr>
<tr>
<td>Crystallization time (hr)</td>
</tr>
</tbody>
</table>
Table 2.2: Factorial Design Matrix for Zeolite A Synthesis Using Conventional Hydrothermal Treatment (AC) and Alkaline Fusion (AF) Methods.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Ageing Time (hr)</th>
<th>Crystallization Time (hr)</th>
<th>Crystallization Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>AF1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AC2</td>
<td>AF2</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>AC3</td>
<td>AF3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>AC4</td>
<td>AF4</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>AC5</td>
<td>AF5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AC6</td>
<td>AF6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>AC7</td>
<td>AF7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>AC8</td>
<td>AF8</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

2.2 Synthesis of Zeolitic Materials: 2.2.1 Conventional Hydrothermal Alkaline Activation: The metakaolin (which served as a combined source of silica and alumina) was obtained by calcinations of refined kaolin in a muffle furnace at 600°C for 1 hour using a crucible. The production of Linde type A zeolite (LTA) was carried out from reaction mixture with molar composition 4.25Na2O:Al2O3:2SiO2:275.4H2O.

In order to produce zeolite A with the above molar composition, 2.434 g of NaOH pellets was dissolved in 35 g of distilled water in reaction beakers and subsequently 1.574 g of metakaolin was added under stirring condition. The aluminosilicate gel was aged at room temperature for different ageing time. Hydrothermal treatment of the aged mixture was carried out in an autoclave at varying crystallization time and temperature. At the end of which the mixture was filtered and washed with distilled water until pH of filtrate were about 8. The samples were subsequently dried in an oven at 80°C for 3 hours and characterized with aid of XRD.

2.2.2 Alkaline Fusion method: In this method, 6.2 g of kaolin (combined source of silica and alumina) was dry mixed with 7.44 g of NaOH powder (kaolin/NaOH = 1/1.2) for 30 minutes. The mixture was heated in a muffle furnace at 600°C for 1 hour. The fused product of kaolin and NaOH was ground and then 4.4 g of this was dissolved in 21.5 ml of distilled water under stirring (in ratio of 4.9 ml of water/g of fused product) under stirring condition to form the amorphous precursors followed by ageing at room temperature and hydrothermal treatment at different crystallization temperatures and times. At the end of the hydrothermal treatment, the sample was filtered, washed (to a pH of 9) and dried in an oven for 6 hours at 80°C. The products obtained were characterized by XRD. Rios et al. (2008) used this technique to synthesize zeolite with molar composition of 3.9Na2O:Al2O3:2SiO2:153.9H2O.

2.3 Determination of Cation Exchange Capacity: The cation exchange capacity (CEC) was determined using the ammonium acetate saturation method at room temperature under standard atmospheric pressure (1atm) using zeolite powders. About 150 mg of the <125 µm size fraction was accurately weighed from each sample and transferred to a mechanical shaker where 10 ml of 1N solution of sodium acetate (CH3COONa) was mixed for 5 minutes. The mixture was then centrifuged in order to obtain a clear supernatant solution which was decanted. This procedure was repeated another two times to ensure that all cations in the zeolite have been replaced with Na ion. The Na-laden zeolite was washed with 30 ml of 99% ethanol and shaken in a mechanical shaker for 5 min. The supernatant was removed, and the procedure was repeated one more time to ensure that the zeolite was clean and laden only with Na. The Na laden zeolite was then mixed with 1N ammonium acetate solution (CH3COONH4) buffered at pH 7 to replace the exchanged sodium ion with ammonium ion. The suspension was well shaken, left overnight and centrifuged. The clear liquid was decanted. The same procedure was repeated with CH3COONH4 five times adding fresh 10ml of CH3COONH4 to ensure that
all Na ions were replaced by NH4 ion. After each step, the supernatant of CH3COO- solution was decanted to a 100 ml volumetric flask which was diluted to 100 ml with ammonium acetate solution and the sodium ion concentration in this supernatant was determined by atomic absorption emission spectroscopy. The sodium binding capacity was then calculated from:

\[q_e = \frac{(c_o - c_b) \times V}{MW \times m} \]

(2.2)

Where \(q_e \) is the exchanged Na ions per weight of zeolite (mg/100 g) or CEC value, \(c_o \) is the Na concentration (mg/L), and \(c_b \) is the Na concentration in the blank (mg/L). Both \(c_o \) and \(c_b \) were measured by AAS. \(V \) is the volume of the aqueous phase (ml), equal to 100 ml in this experiment; \(m \) is the amount of zeolite (g), equal to 150mg and \(MW \) is the molecular weight of Na (g).

3.0 Characterization of Zeolitic Materials: The nature of phase and percent purity (crystallinity) of as-synthesized zeolites were identified using an AXS Bruker advance-8 Diffractometer using CuKα (\(\lambda = 0.1541 \text{nm} \)) radiation at 40 kV and 40 mA. Using a scan speed of 0.04° in the 2θ range of 5-50°, the diffraction patterns of as-synthesized zeolites were obtained.

4.0 Results:

![Figure 4.1: XRD Pattern of Laboratory Synthesized Zeolite A (AC Samples)](image)

![Figure 4.2: XRD Pattern of Laboratory Synthesized Zeolite A (AF Samples)](image)

Figures 4.1 and 4.2 show the XRD pattern of the as-synthesized zeolite A using both conventional hydrothermal and alkaline fusion prior to hydrothermal treatment methods respectively. From the conventional hydrothermal method, the formation of zeolite A was observed through the peak diffraction at 2θ = 12.49, 17.69, 24.04, 35.83, 39.53, 43.61, 47.41 and 48.02 as reported by Traecy and Higgins (2001). The zig-zag peaks in the background indicates the presence of amorphous phase of metakaolinite. The peak at 2θ is 28.53 confirm the presence of sodalite. This is in accordance with Ostwald’s rule of successive reaction. From the analysis of the peak area, percent crystallinity was estimated. The percent crystallinity ranged from
22.52 - 30.70 with sample AC7 having the highest percent crystallinity. While the characteristic peak of zeolite A synthesized by alkaline fusion method was observed at 2θ between the range of 7.21, 10.19, 12.49, 20.47, 24.04 and 36.59. The peak due to quartz was observed to be present at 2θ = 26.6 (Treacy and Higgins, 2001) in both instances. The percent crystallinity ranged from 28.74 - 43.35 % with sample AF6 having the highest percent crystallinity. Although the zeolite peaks are weak, but they are quite consistent with the reference especially the AF samples. From the analysis of the results for the two methods of synthesis, except samples AF2 and AC2, samples synthesized through alkaline fusion route (AF) possess higher percent crystallinity than the samples synthesized by conventional method (AC), also the first diffraction peak appeared at 2θ = 7.21 and 12.49 for AF’s and AC’s samples respectively. This can be attributed to the fact that the fusion aid in transformation of quartz and kaolinite into large amount of sodium silicate amorphous aluminosilicate (metakaolinite), which indicates that the fusion process was very effective in extracting the si species in these mixture (Rios et. al., 2008 and Espejel-Ayala et al., 2013). The absence of peak diffraction at 2θ for some of the samples could be due to incomplete transformation of MTK or due to low crystallinity at that point. The full factorial design presented in Tables 2.2 and their uncoded values are shown in Figure 4.3.

![Cube Plot (fitted means) for AC](image1.png)

![Cube Plot (fitted means) for AF](image2.png)

Figure 4.3. Cube Plots for Zeolite A CEC Response

The cube plot was used to examine how the process variables affect the zeolite A CEC. The plots show the response surface plot of zeolite A CEC. The cube plot corner points represent a different factorial design and illustrate the average zeolite A CEC result for the synthesis based on the process variables level. Some of the calculated CEC values are quite high compared to the theoretical value of 548 meq/100 g for zeolites A which may be due to presence of some unidentified/undetected phases or impurities that has adsorption capacity. These values are higher than the reported values of San Cristobal (2010) who reported a CEC of 292.8 meq/100 g for zeolite A.

4.1 Factorial Analysis Results for the Synthesized Zeolites: The factorial analysis was carried out using Excel 2013 and Minitab release 17. For all the analysis, the t-distribution, coefficients, P-values and estimated effects for the experimental results were obtained. The sum of squares and the F-distribution were also determined. The 95% confidence level was used for the statistical calculations. The effect defined as the increase or decrease of the zeolite CEC when process factor was changed was also determined. A negative effect indicates a decrease in zeolite CEC as the process factor setting is increased. A positive effect designates an increase in zeolite CEC as the process factor setting is increased. The effect of the magnitude is used in ranking the influence of the factors on the experimental results. The regression equation coefficients were also acquired from the fit of the zeolite CEC results, if the P-value is <0.05, then the factor
is significant statistically at the chosen 95% confidence level.

4.1.1 Factorial Analysis Results Showing Effects of Crystallization Temperature, Crystallization Time and Ageing Time on Zeolite A CEC: Tables 4.1 and 4.2 show the estimated effects and coefficients for zeolite – A CEC. The result of the estimated effects suggests that the model contains three main effects, which can be evaluated in the absence of significant interactions and three two-way interaction effects. The p-values for all three main effects are less than 0.05 (Crystallization temperature = 0.000, Crystallization time = 0.000 and ageing time = 0.000). Therefore, there is evidence of a significant effect. The p-value result from the Tables also indicates that there is significant interaction between crystallization temperature and crystallization time (0.000) and between crystallization time and ageing time as their terms have p-values less than 0.05 (α=0.05). The Tables also show that crystallization temperature has the greatest effect (177.56 and 176.56) on zeolite A CEC. In addition, the tables show that setting the crystallization temperature high produced higher zeolite A CEC than setting the crystallization temperature low. The interaction between crystallization temperature and crystallization time has the second greatest effect (-108.34 and -115.84) on zeolite A CEC. In addition, setting the crystallization temperature high produced higher zeolite A CEC than setting the crystallization temperature low. The negative sign shows the settings of the two process variables have antagonistic effect (need to be at opposite setting). The result of the main effect plots show that the crystallization temperature is set high and crystallization time is set low to produce zeolite A of high CEC. Crystallization time has the third greatest effect (-86.58 and -93.58) on zeolite A CEC. In addition, setting the crystallization time high produced lower zeolite A CEC than setting the crystallization time low. Ageing time has the fourth greatest effect (-23.09 and -17.09) on zeolite A CEC. In addition, higher ageing time produced lower zeolite A CEC than lower ageing time. The interaction between crystallization temperature and ageing time has the smallest effect (-1.23 and 3.27) on zeolite A CEC. The negative sign shows the settings of the two process variables have antagonistic effect (need to be at opposite setting). The result of the main effect plots show that the crystallization temperature is set high and crystallization time is set low to produce zeolite A of high CEC. Crystallization time has the third greatest effect (-86.58 and -93.58) on zeolite A CEC. In addition, setting the crystallization time high produced lower zeolite A CEC than setting the crystallization time low. Ageing time has the fourth greatest effect (-23.09 and -17.09) on zeolite A CEC. In addition, higher ageing time produced lower zeolite A CEC than lower ageing time. The interaction between crystallization temperature and ageing time has the smallest effect (-1.23 and 3.27) on zeolite A CEC. In addition, setting the interaction high produced lower zeolite A CEC than setting the interaction low. The values in brackets are for AC and AF respectively.

Table 4.1: Estimated Effects and Coefficients for Zeolite A (Samples AC) CEC

<table>
<thead>
<tr>
<th>Term</th>
<th>Effect</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1143.</td>
<td>2.56</td>
<td>145.35</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Crystallization Temperature</td>
<td>177.56</td>
<td>19.95</td>
<td>34.71</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Crystallization Time</td>
<td>-86.58</td>
<td>227.9</td>
<td>-16.93</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Ageing Time</td>
<td>-23.09</td>
<td>29.5</td>
<td>-4.51</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Crystallization Temperature*Crystallization Time</td>
<td>-108.34</td>
<td>-3.102</td>
<td>2.56</td>
<td>-21.18</td>
<td>0.000</td>
</tr>
<tr>
<td>Crystallization Temperature*Ageing Time</td>
<td>-1.23</td>
<td>-0.426</td>
<td>2.56</td>
<td>-0.24</td>
<td>0.816</td>
</tr>
<tr>
<td>Crystallization Time*Ageing Time</td>
<td>12.44</td>
<td>-6.95</td>
<td>2.43</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Crystallization TemperatureCrystallization TimeAgeing Time</td>
<td>18.76</td>
<td>0.0926</td>
<td>2.56</td>
<td>3.67</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 4.2: Estimated Effects and Coefficients for Zeolite A (Samples AF) CEC

<table>
<thead>
<tr>
<th>Term</th>
<th>Effect</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1161.</td>
<td>1.56</td>
<td>262.56</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Crystallization Temperature</td>
<td>176.56</td>
<td>20.747</td>
<td>56.53</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Crystallization Time</td>
<td>-93.58</td>
<td>244.7</td>
<td>-29.96</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Ageing Time</td>
<td>-17.09</td>
<td>30.27</td>
<td>-5.47</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Crystallization Temperature*Crystallization Time</td>
<td>-115.84</td>
<td>-3.343</td>
<td>1.56</td>
<td>-37.09</td>
<td>0.000</td>
</tr>
<tr>
<td>Crystallization Temperature*Ageing Time</td>
<td>3.27</td>
<td>-0.437</td>
<td>1.56</td>
<td>1.05</td>
<td>0.326</td>
</tr>
<tr>
<td>Crystallization Time*Ageing Time</td>
<td>14.94</td>
<td>-7.61</td>
<td>4.78</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Crystallization TemperatureCrystallization TimeAgeing Time</td>
<td>20.76</td>
<td>0.1025</td>
<td>1.56</td>
<td>6.65</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Pareto charts of the standardized effect for zeolite A CEC response in Figure 4.5 show that there are three significant effects (α = 0.05). These significant effects include crystallization temperature (A), crystallization time (B) and ageing time (C). In addition, it is observed that the Pareto plots show that the largest effect is crystallization temperature (A) because it extends the farthest. In 2011, Kovo concluded that
temperature is an important parameter that influences zeolite crystallization because a small change in heating temperature can cause instant transformation in the zeolite phase. The effect for the interaction between the crystallization temperature and ageing time (AC) is the smallest because it extends the least. The ageing time and crystallization temperature interaction is not significant at $\alpha = 0.05$ level in the estimated effects and coefficients in Tables 4.1 and 4.2.

Figure 4.5. Pareto Charts of the Standardized Effect for Zeolite A CEC Response

Main effect plots of the fitted means of Figure 4.6 indicate the following:

- **Crystallization temperature:** Crystallization temperature produced higher CEC at high temperature (100°C) than at low temperature (70°C) as the fitted mean increased from 280 to 460 and 320 to 490 for both AC and AF respectively.

- **Crystallization time:** Crystallization time produced higher zeolite A CEC at low crystallization time (3 hrs) than at high crystallization time (6 hrs) as the fitted mean decreased from 420 to 330 and 460 to 370 respectively for both AC and AF.

- **Ageing time:** Lower ageing time (3 hrs) produced zeolite A of higher CEC than higher ageing time (12 hrs) as the fitted mean decreased from 370 to 360 and 420 to 300 respectively in both cases. The earlier analysis obtained from p-values of Tables 4.1 and 4.2 show that the three main effects were significant at the 0.05 α-level. By comparing the slopes of the lines on the Main Effect plots of Figure 4.6, the relative magnitude of the synthesis process factor effects were compared. These plots show that there seem to be a large difference in the magnitude of the effects with crystallization temperature being the largest (steepest slope) followed by crystallization time (steeper slope) and ageing time being the smallest.
Method, 3sm. Yti88e8e07thod, 3sm. 3ti88t.

Figure 4.6. Main Effect Plots for Zeolite A CEC Response
Surface plot of zeolite A CEC against crystallization time and crystallization temperature of Figure 4.7 shows how crystallization temperature and crystallization time are related to zeolite A CEC. To maximize zeolite A CEC, high setting of crystallization temperature of 100oC and low setting of crystallization time of 3 hrs, while holding ageing time at 7.5 hrs should be chosen.

Figure 4.7. Surface Plots of Zeolite A CEC against Crystallization Time and Temperature
The model Equations can be built up from estimated coefficients for zeolite A CEC of Tables 4.1 and 4.2.

For conventional hydrothermal method, Y_p=-1143.6+19.95x_1+227.9x_2+29.5x_3-3.102x_1 x_2-0.4261x_1 x_3-6.95x_2 x_3+0.0926x_1 x_2 x_3 (4.1) For alkaline fusion method, Y_p=-1161.6+20.747x_1+244.7x_2+30.27x_3-3.343x_1 x_2-0.4371x_1 x_3-7.61x_2 x_3+0.1025x_1 x_2 x_3 (4.2) Where x_1 = Crystallization temperature x_2 = Crystallization time and x_3 = Ageing time (The model equations are valid if x1, x2 and x3 ≠ 0)

Table 4.5: Statistical Parameters of the Model Correlating Zeolite A CEC to Crystallization temperature, Crystallization time, and Ageing time

<table>
<thead>
<tr>
<th>Statistical Parameters</th>
<th>AC</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>10.2303</td>
<td>6.2462</td>
</tr>
<tr>
<td>R^2</td>
<td>99.60%</td>
<td>99.86%</td>
</tr>
<tr>
<td>R^2 adjusted</td>
<td>99.25%</td>
<td>99.73%</td>
</tr>
<tr>
<td>R^2 predicted</td>
<td>98.39%</td>
<td>99.43%</td>
</tr>
</tbody>
</table>

Table 4.5 shows the model proportion of the response variability that is (R2), the predicted R2, which is the level of prediction of the future data by the model and the adjusted R2 useful for comparing models from the same data with different numbers of terms. The R2 value lies between 0 and 100%. The model predicts better when R2 value is closer to 100% (Doddapaneni, Tatineni, Potumarthi and Mangamoori, 2007). The sum of squares of the prediction errors (PRESS) for assessing model’s predictive ability from Table 4.5 is 10.2303 and 6.2462 for AC and AF samples respectively. Low PRESS value is an indication that the model fits the data as Montgomery (2005) reported that the model fits the data better when the PRESS is smaller.

5.1 Conclusions: Using both conventional hydrothermal and alkaline fusion methods, zeolite-A (NaA) have been successfully synthesized from Ahoko kaolin. It has also been demonstrated by this study the application of factorial analysis in determining the zeolite synthesis parameters that are having significant effect on zeolite CEC. For all the analysis the samples synthesized. From the percent crystallinity estimated from the
peak area, the AF’s gave better results than AC’s samples. Some of the calculated CEC values are quite high compared to the theoretical value of 548 meg/100 g which may be due to presence of some unidentified/undetected phases or impurities that has adsorption capacity. The synthesized zeolites showed high CEC as compared to other commercial zeolites and therefore can be used in the removal of heavy metals from aqueous phase. From the factorial analyses, the effects of crystallization temperature, crystallization time and ageing time and their interactions were investigated and for zeolite A (both AC and AF), the crystallization temperature is the most significant factor and the interaction between the ageing time and crystallization temperature is less significant on the CEC.

Accelerating Renewable Energy Generation

Mao Miyazato
Toyohashi University of Technology, Toyohashi University of Technology, Toyohashi, Japan

Abstract: Accelerating renewable energy generation is essential for the development of a sustainable society. Anaerobic digestion (AD) is a potential system for accelerating clean energy production from organic waste; however, the biogas production efficiency of AD is still poor and requires improvement. Recently, the addition of granular activated carbon (GAC) and the use of microbial electrochemical technology (MET) has reported that the efficiency of biogas production can be improved by promoting electron transfer on microbial reactions in the AD system. GAC facilitates direct interspecies electron transfer (DIET) in the AD system and stabilizes biomass decomposition. The strong conductivity, large surface area, and adsorption capability of GAC were supposed to work as an electron conductor for the DIET effect. However, no precise relationship between biogas production rate and GAC characterization has been investigated. The objective of this study is to investigate the effect of carbon-based conductive materials characterizations on biogas production rate, utilizing AC, GAC, and Biochar with different pore sizes and volumes variation. Activated Carbon showed the fastest biogas production rate and the findings revealed that the growth of both micro and macro pores was the main cause for the acceleration of biogas production efficiency. Although it cannot be certain, earlier research suggested that micropores contribute to adsorption and macropores contribute
to biofilm formation.

Artificial Neural Network-Based Prediction Model of Properties of Sic Ceramics for the Optimization of Surface Treatment Parameters

Auezhan Amanov
Mechanical Engineering, Sun Moon University, Korea

Abstract: In this study, a novel alternative approach is proposed that is based on the artificial neural network (ANN) concept for predicting the surface properties of SiC ceramic that is subjected to ultrasonic nanocrystal surface modification (UNSM) treatment. In the UNSM treatment, not only the static load but also the dynamic load is exerted. The UNSM treatment is conducted by striking a surface up to 20K times per second with an attached ball to the horn in the range of 1K-100K per square millimeter. Moreover, a post-deposition development of procedures for the successful utilization of UNSM technology in manufacturing will be discussed. The advantage will be taken to provide an understanding of the hardening mechanisms and the microstructural evolution occurring in SiC ceramic by ultrasonic nanocrystal surface modification (UNSM) technology. Experimental measurement data were used in the ANN training process and validation. The trained model showed the capability of predicting the surface roughness and hardness accurately with a Pearson correlation value (R) of 0.984 and 0.997 for surface hardness and residual stress models when tested using the existing test dataset, respectively. It can be concluded that ANN as the alternative approach is a suitable method for accurately performing prediction for practical use in the absence of a mathematical model. Since the experimental result was used in the ANN model training process, the predicted result by the ANN model appears to agree with the experimental results of the UNSM treatment. Because of these demonstration results, the ANN-based prediction model can be used as a prediction tool to optimize the UNSM treatment parameters.

Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Bin Cao
Department of Design and Engineering (BU) & School of Metallurgy (NEU), Bournemouth University & Northeastern University, United Kingdom & China

Yuan Yia
School of Metallurgy, Northeastern University, Shenyang 110819, China

Wang Qiang
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China

Amor Abdelkaderc
Department of Design and Engineering, Faculty of Science & Technology, Bournemouth
Abstract: The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris [1]. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash [2]. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study [3] investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. A strong correlation between the eddy current force in simulations and the repulsion distance in experiments was found by Pearson correlation analysis, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined, which offered some optimization criteria for eddy current separators. The mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. We have further found that increasing the curvature of magnetic field lines within particles can also increase the eddy current force, providing an optimized method to improve the separation efficiency of fine particles. Based on the results of the above-mentioned studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. The results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: Eddy current separation, Metal recovery, Numerical simulation, Particle size.

Facile Sol-Gel Preparation of High-Entropy Multielemental Electrocatalysts for Efficient Oxidation of Methanol and Urea

Talifhani Mushiana
Chemistry, University of Science and Technology of China, Hefei, China

Abstract: High-entropy multi-elemental (HEM) electrocatalysts present superior catalytic performance due to the efficient synergism of their components. HEM electrocatalysts are usually prepared through hydrothermal reactions or calcination, which could generate undesired heterogeneous structures that hinder the exploration of the structure–property relationship of these HEM electrocatalysts. Herein, we report a sol-gel method to synthesize homogeneous HEM electrocatalysts for electro-oxidation of methanol and urea (methanol oxidation reaction (MOR) and urea oxidation reaction (UOR)), through an acid-catalyzed gelation at room temperature. With Ni as the primary component for MOR and UOR, Co can reduce the overpotentials, while Fe can increase the catalytic activities and durability. Borate and phosphate can tune the charge distribution in active sites and speed up the reaction kinetics through fast proton transfer. Thus, the optimal Ni2Fe0.5Co0.5-BP HEM catalyst demonstrates superior catalytic activity together with good durability and great resistance to CO poisoning. In addition, a direct methanol fuel cell with Ni2Fe0.5Co0.5-BP electrode can not only provide power, but also produce formic acid with high yield and high Faradaic efficiency. This work presents a simple strategy to prepare high-performance HEM electrocatalysts for fuel cells and production of value-added chemicals.

Keywords: Catalytic Oxidation Reaction, High-Entropy Multi-Elemental Electrocatalysts, Sol-Gel, Formic Acid

Listeners

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>ERCICSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amor Vincent Canono</td>
<td>Faculty of Computer Science, Union Christian College, Philippines</td>
<td>ERCICSTR2302058</td>
</tr>
<tr>
<td>Hiroyuki Daimon</td>
<td>Student Support Center, Toyohashi University of Technology, Japan</td>
<td>ERCICSTR2303057</td>
</tr>
<tr>
<td>Tarik Ismail Hassan Khalel</td>
<td>Department of computers and communications/ College of Engineering, Nawroz University, Duhok, Iraq</td>
<td>ERCICSTR2303066</td>
</tr>
<tr>
<td>Joseph Olatunde Ogunfemi</td>
<td>Managing Director, 4JS Power Engineering, Lagos, Nigeria</td>
<td>ERCICSTR2303078</td>
</tr>
</tbody>
</table>
Upcoming Conferences:
https://straevents.org/stra
https://straweb.org/